L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins
نویسندگان
چکیده
One of the major functions of DNA methylation is the repression of transposable elements, such as the long-interspersed nuclear element 1 (L1). The underlying mechanism(s), however, are unclear. Here, we addressed how retrotransposon activation and mobilization are regulated by methyl-cytosine modifying ten-eleven-translocation (Tet) proteins and how this is modulated by methyl-CpG binding domain (MBD) proteins. We show that Tet1 activates both, endogenous and engineered L1 retrotransposons. Furthermore, we found that Mecp2 and Mbd2 repress Tet1-mediated activation of L1 by preventing 5hmC formation at the L1 promoter. Finally, we demonstrate that the methyl-CpG binding domain, as well as the adjacent non-sequence specific DNA binding domain of Mecp2 are each sufficient to mediate repression of Tet1-induced L1 mobilization. Our study reveals a mechanism how L1 elements get activated in the absence of Mecp2 and suggests that Tet1 may contribute to Mecp2/Mbd2-deficiency phenotypes, such as the Rett syndrome. We propose that the balance between methylation "reader" and "eraser/writer" controls L1 retrotransposition.
منابع مشابه
Methyl-CpG-binding protein 2 represses LINE-1 expression and retrotransposition but not Alu transcription.
In order to explore the defense mechanism by which retrotransposons are repressed, we assessed the ability of methyl-CpG-binding protein 2, MeCP2, to influence LINE-1 (L1) and Alu transcription and, furthermore, L1 retrotransposition. In transient transfection assays, targeting of the transcriptional-repression domain (TRD) of MeCP2 (via a linked Gal4 DNA-binding domain) to the transcriptional ...
متن کاملZF-CxxC domain-containing proteins, CpG islands and the chromatin connection
Vertebrate DNA can be chemically modified by methylation of the 5 position of the cytosine base in the context of CpG dinucleotides. This modification creates a binding site for MBD (methyl-CpG-binding domain) proteins which target chromatin-modifying activities that are thought to contribute to transcriptional repression and maintain heterochromatic regions of the genome. In contrast with DNA ...
متن کاملSpliced integrated retrotransposed element (SpIRE) formation in the human genome
Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5' untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice don...
متن کاملThe ORF1 Protein Encoded by LINE-1: Structure and Function During L1 Retrotransposition
LINE-1 or L1 is an autonomous non-LTR retrotransposon in mammals. Retrotransposition requires the function of the two L1-encoded polypeptides, ORF1p and ORF2p. Early recognition of regions of homology between the predicted amino acid sequence of ORF2 and known endonuclease and reverse transcriptase enzymes led to testable hypotheses regarding the function of ORF2p in retrotransposition. As pred...
متن کاملTET1 inhibits gastric cancer growth and metastasis by PTEN demethylation and re-expression
Ten-Eleven Translocation 1 (TET1) is a member of ten eleven translocation enzymes, which convert 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). TET1 can promote CpG islands demethylation in specific genes and often absent in various cancers. Herein, we found that TET1 expression and 5-hmC content were low in gastric tumors compared to its adjacent non-tumor tissues. Cell proliferat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017